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Note 

Energy Conserving Galerkin Finite Element Schemes for 
the Primitive Equations of Numerical Weather Prediction 

1. INTRODUCTION 

For extended time integrations of the equations of atmospheric motion the 
importance of observing energy and other conservation properties of the finite dif- 
ference equations has been recognised. The schemes in use are based on ideas 
developed in [l]. The use of energy conserving schemes generally improves the 
nonlinear stability of the schemes and therefore reduces the need for intentional 
numerical diffusion. For climate models, conservation properties of numerical 
approximations may be a desirable property in itself. 

For the purposes of medium range weather prediction, it may be desirable to 
refine the grid in certain areas of particular interest for the forecast in the target 
area. Such models with grid refinement may suffer from nonlinear instability. Con- 
sequently short range forecast models of this type are usually implemented with 
relaxation procedures, as proposed in [lo]. Since conservation properties of 
schemes are known to enhance the nonlinear stability it is ineresting to formulate 
conserving schemes for irregular grids. 

Finite element schemes can be supposed to have a good nonlinear stability 
because of the reduced aliasing error of the Galerkin method. Furthermore, they 
automatically transfer their conservation properties to the case of irregular 
resolution. Standard finite element schemes can be expected to conserve quadratic 
moments, from which energy conservation for the nondivergent flow follows (see 
12, 31). Also, the semidiscretized equations, obtained by approximating only the 
vertical coordinate in o-coordinate equations and considering the horizontal coor- 
dinates as continuous, are normally energy conserving (see [7] ). Again in this case 
the energy is a second order moment. 

Conserving schemes, including those with energy conservation were formulated 
in 14) for the Boussinesq equations. A relation between the approximation spaces 
for pressure and temperature is necessary to obtain energy conservation. In par- 
ticular, linear elements for the velocities and pressure are not admitted in [4] for an 
energy conserving scheme. In [ 111, similar schemes were investigated, which allow, 
however, a less restricted choice of basis functions. 

This paper presents some energy conserving finite element schemes for the 
primitive meteorological equations. Schemes are formulated for the two-dimen- 
sional shallow water equations. All schemes presented can easily be generalized to 
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energy conserving schemes of the o-system equations. This may be achieved by 
starting from the semidiscretized equations given in [7]. One of the schemes 
requires, as in [4], a relation between the approximation spaces for pressure and 
temperature. Another scheme uses only linear elements for all fields, and therefore 
may be a good candidate for implementation in large models. 

Since the schemes use only general relations between the basis function spaces, 
the developments are valid for other Galerkin schemes, such as the spectral method 
or the parameter fluid models proposed in [S, 6 1. Questions of practical implemen- 
tation are, however. discussed only for the use of linear finite elements for the 
velocity field. 

2. GALERKIN PROJECTION 

For fields 4, we assume the following representation: 

i(r)= i d,e,.(r). 
1 = I 

(1) 

In Eq. (I), r is the vector x, p, with x, y being horizontal coordinates. Depending on 
the choice of the basis functions e,., different approximating spaces Sz,, QZ,..., are 
obtained. We consider here only linear and quadratic finite element (FE) spaces, 
though this specialisation is used only to discuss questions of practical implemen- 
tation. 

To formulate FE schemes for prognostic equations, it s necessary to approximate 
a rather general field d(r) by a function d(r) of the space given by Eq. (1). This is 
achieved by the Galerkin projection, where the coefftcients 4,. in Eq. (1) are defined 
by 

(et’ a= (e,, 41, (E { l,..., N). (2) 

The scalar product (a, h) is defined as 

(4 h) = 1 a(r) h(r) 4. (3) 

Here, it is sufficient to assume the measure L+ to be of the form 

dp = w( r ) dx dy, (4) 

with u’ being a positive continuous function. The relation betwen the fields 4 and 4, 
given by Eq. (2) can be written as 

J=G@ (5) 

with G being the Galerkin projection operator. 
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The following properties of G can easily be verified: 

G==G.G=G, 

(Gut h) = (0, Gh), (6) 

G(acj, + hq&) = aG4, + hG4,. 

By choosing different spaces of basis functions, and different w  in Eq. (4), different 
Galerkin projections G,, G2 ,..., belonging to scalar products ( , ), and ( , )* ,... 
etc., can be defined. 

For prognostic equations of the form 

d =.f($) (7) 

the approximation 

&Gf@! (8) 

is referred to as the standard FE-scheme. Of course, in Eq. (8), a different G can be 
used for different components of 4. 

3. ENERGY CONSERVING SCHEMES FOR THE SHALLOW WATER EQUATIONS 

The schemes are presented here for the X-J) plane. The generalization to the 
rotating sphere is obvious. An energy conserving scheme for the shallow water 
equations is 

zi= -G,(uuy+uu,.+H,), 

ti = -G,(uu, + uu,. + H,.), (9) 

hi= -G=((uH), + (uH),.). 

The above scheme will be referred to as scheme A. Let R, and 52, be the spaces 
belonging to the projections G,, G2 and ( , ), and ( , )= be the corresponding 
scalar products. The conditions of energy conservation require a relation between 
the spaces Q, and Q2 as well as special definitions for the scalar products. 

(a, h), = i’H(r) u(r) b(r) dx dy, 

(10) 

(11) 

(a, h)* = 1 u(r) h(r) dx dy. (12) 
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The quadratic space Sz: of 9, is defined as the space generated according to Eq. (1) 
by all products e,(r) e,,(r), where the e,. form a basis of 0,. 

In one space dimension, the quadratic space of the space of linear splines is the 
space of quadratic splines with the same node points. In two space dimensions, not 
every quadratic space can be used. For example, the quadratic element space 
defined in [8] is not the quadratic space of the corresponding linear element 
scheme. For a regular rectangular mesh the grid for the definition of the quadratic 
space of the linear splines is given in Fig. 1. Let P,.(X) be the basis functions of linear 
splines in one space dimension, and let the basis functions of linear splines in two 
space dimensions be given as 

&Q-c Y) = e,.(.yu) e,,(.r). (13) 

Then the following basis functions are associated with the node points in Fig. 1 for 
its quadratic space: 

ht.,, = b,‘.,, > (14) 

h? + ( I’? I./, = e,.(.x) e,.. ,(-xl e,,(.v), (15) 

%,,.(l’2, = e,J-u) e,,Lv) eji+ I(~3)r (16) 

K+,, 2).,u t(l,2l =e,.(-y) e,.. I(-y) I,, e,,+ l(~,). (17) 

The basis function hz+(, 2j.1i+(,;2, was missed out in the quadratic spline space 
defined in [IS]. The condition given by Eq. (10) is rather similar to a condition used 
in [4] to obtain energy conservation. In [4] the observation has already been 
made that not every space of quadratic splines for the pressure field leads to energy 
conservation. 

To prove the energy conservation of Eqs. (9) form the time derivative of the total 
energy and denote the vector U, v by u. We assume that the FE discretization of u 

0 0 0 
v,/J+ 1 pfl,vS-l/ v+l.p+l 

0 0 0 
V./-l+% V+%,pt-% v+l.p+% 

FIG. 1. The grid for the definition of the quadratic space of linear splines for regular rectangular 
resolution. 
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implies II. n = 0 at the boundaries of the region, with n being the normal vector of 
the boundary. 

u2+ H)dxdy 

(18) 

The definition equations (11) and (12) have been used in Eq. (18). According to 
Eqs. (9) we obtain 

f?= -(GZdiv(Hu),tu2+H)2 

-(II, G,(u.grad u+grad H)),, 
(19) 

Using Eq. (6) for the tirst term of Eq. (19) and transforming grad u term in the 
second, we obtain 

&= -(div(Hu), G2(tu”+ H)) 

-(u, G, grad(+ u2 + H)), 

-(u,G,uxcurlu)),. 

The last term of this equation is 0 by Eq. (6). 
Using Eqs. (6) and (lo), one can eliminate the Galerkin projections in Eq. (19), 

I?= -(div Hu,tu'+H), 

--(EIH,(+~+ H)r)2-(uH,(~u2+ H)J2. 
(0) 

Performing a partial integration in Eq. (20), using the condition that u * n is 0 at the 
boundaries, one can see that the energy is conserved. 

For easy practical implementation it may be convenient to have a scheme which 
allows linear finite element spaces for the approximation of all fields. Such schemes 
can be obtained using a form of the shallow water equations used in [9] to obtain 
difference schemes with conservation properties. It will be referred to as scheme B; 

ti=G,(~u-(G2(~u2+ H)),), 

ti=G,(-t+(G2($u2+H)),), 

fi = - G2 div(Hu), 
(21) 

9 = !I, - Lf .I’ 

Again we require that G, corresponds to the scalar product given in Eq. (11) and 
G, corresponds to that of Eq. (12). 6 can be interpolated arbitrarily from q. No con- 
dition on the approximation spaces belonging to G, and G, is imposed. 
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To prove energy conservation for Eqs. (21), we consider the energy equation 

k=;jH.;(u’+H)dxdy 

Using Eqs. (6) and performing a partial integration, observing the boundary con- 
ditions for u, we obtain: 

A= - (div Hu, G&u’+ H))Z + (Cl div uH, tuz + H)?. 

Using again Eq. (6), we see that the right-hand side of Eq. (22) is zero. 

(22) 
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FIG. 2. Energy diagram with different schemes for a one dimensional gravity wave: (a) control. 
(b) scheme A, (c) scheme B. 



264 J . STEPPELER 

4. A NUMERICAL CALCULATION 

The possible impact of energy conservation on the stability of meteorological 
models has to be explored by two dimensional models, similar to [9]. Here only 
the result of one-dimensional calculations is given. Since a very small time-step was 
used, time discretization does not do much to destroy energy conservation. 

A one-dimensional model was obtained by putting u and all J derivatives to 0 in 
Eq. (9) and Eq. (21). The equations can be nondimensionalized using a space scale 
X,, and a time scale f,,. The finite element scheme was obtained by using a periodic 
channel with 22 node points being X,, apart, except for points 10 to 12, which were 
only :X0 apart. A gravity wave was obtained by using as initial condition u = 0 and 
H= 1 for .YE(~X,,. 10X,) and H=.8 for ,~4(5X,, 10X,,). 

For comparison, a nonconserving scheme, referred to as the control scheme, was 
obtained by replacing G, in Eq. (9) by Gz. The time step used was 0.01 t,. Figure 2 
gives the energy diagram for f E (0, t,,) for the control scheme and schemes A and B. 
A better conservation of energy by schemes A and B is apparent. In this simple 
example no nonlinear instability occurs, even for very long integrations, for any 
scheme. 

5. CONCLUSIONS 

Two energy conserving Galerkin finite element schemes were obtained for the 
primitive meteorological equations. One of them, the B-scheme, allows the use of 
linear elements for all fields, and is therefore relatively easy to implement in large 
models. 
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